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A two-layer stratified medium with ax&ant, but different, values of the Brunt-V&-& (BV) frequencies in the layers is considered. 
An integral representation of the fundamental solution of the internal-wave equation is constructed in the Boussinesq 
approximation. The wave patterns in the upper and lower layers are investigated under the assumption that the source is located 
in the lower layer. It is shown that the fundamental solution in the lower layer is expressed in terms of the same standard functions 
as in the case of a single layer. The situation is more complicated in the upper layer and the investigation is based on a study of 
the branching points of a certain multivahred function. For long times, approximate solutions are obtained by the stationary- 
phase method. The Limiting case when the BV frequencies in the layers are only slightly different is investigated. In another limiting 
case, a surface exists (a circular cone or a cylinder, depending on the ratio of the BV frequencies in the layers) close to which 
the formulae obtained using the stationary-phase method are inapplicable. The special asymptotic form of the fundamental solution 
on this surface is calculated. Q 1997 Elsevier Science Ltd. AU rights reserved. 

1. INTEGRAL REPRESENTATION OF THE FUNDAMENTAL SOLUTION 

We consider the function G(x, y, z, zo, r) which is a generalized solution of the equation 

a2 
z( 

AC)+ N*(t)A,G = -6(x)6(y)& +z,-,)6(r) 

N(z)= N,O(z)+ N,Cl(-z), A, =$+x 
ay2 ’ 

A=A,+$ 

where 8 is the delta-function and e(z) is the Heaviside function, which is equal to zero when z < 0 and 
equal to unity when z > 0. We know [l] that G is the solution of the homogeneous equation (1.1) with 
initial conditions 

Gj,=O=O. E 
at I t=o =-h9 

r2 =x*+y2 

It is assumed that z. > 0, Ni f N2. A general solution of Eq. (1.1) will be sought which is bounded 
at infinity and is a continuously differentiable function of (x, y, z) in the whole of space with a deleted 
point (0, 0, -zo). The small vertical displacements of the fluid particles, which are induced by the sources 
and dipoles which have begun to function at the initial instant of time, are expressed in terms of 
derivatives of the function G, while the solution of the general Cauchy problem for the internal wave 
equation is expressed in terms of a convolution with the fundamental solution. 

The fundamental solution has been investigated in detail for N = const. An extensive bibliography 
can be found, for example, in [2]. New approximate representations for the fundamental solution were 
investigated in [3]. An investigation of internal waves for the case of a discontinuous BV frequency 
is of considerable interest for the physics of the atmosphere and ocean. Free oscillations in such a 
medium have been studied, but forced oscillations have not been investigated to any great extent 
because of the mathematical difficulties involved, since fairly detailed estimates of multivalued 
analytical functions are required in order to study the formal integral representation of the fundamental 
solution. 

We will use the well-known integral representations for S-functions [l] 
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and wiII seek the fundamental solution of Eq. (1.1) in the form 

G _ lj2 +[ : j~u~~(ru)G*(u, P.Z)e“P(pr)ddP 

-c 

(1.2) 

(1.3) 

Substituting (1.3) into (1.2) and using (l.l), we obtain the following equation for determining G’ 

p2($-u’G’)-N’(z)uZc’ =-s(z+q,) 

Green’s function for the ordinary differential equation (1.4) with constant coefficients can be found 
in an elementary way as: 

forz > 0 

G’=- 4x 
UP& + K,) 

exp -j(LK, +qK2) , K; =p2+N,? 

forz < 0 

G’=- 2x( Kz - K, ) 
2upKz(K2 + K, 1 

exp -jK2(z-~))-~exp(-~K2~z+~~) 

Substituting (1.5) and (1.6) into (1.3) and making use of the fact that 

j Jo(fu)exp(-aa)& = 
0 

a>0 

we obtain, for z > 0 

4rc'iG = 1 
(N,2 -NI )f~-i- 

2 pi” ;K2 - Kl)ewW4p 
p2r2 +(zK, +qK2)’ 

Simihuly, substituting (1.6) into (1.3), we obtain, for z c 0 

(1.5) 

(1.6) 

(l-7) 

2. WAVE PATTERN IN THE LOWER HALF-SPACE 

We know that the fundamental internal-wave equation for a constant I3V frequency has the 
form 

and different integral representations and asymptotic formulae (see [2, 31, for example) have been 
obtained for the function CD@, A.). In particular 

1 +m-i0 

aq’C,h)=- j 
exp(in)& = Lgn(1 - X)j 

sin(m)& 

21L -m-iO~~ It Ir. 
‘7 

10-v xv -A )I 

If we put 
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R: =r2 +(Zfq))2, h* =- Iz*zol 
& 

in (1.8) and make a change of variables by putting 

p=iN,v, z=N,r, p2=NflNi=1+8 

then, when z < 0, this formula becomes 
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(2.1) 

(2.2) 

(2.3) 

Note that the first two terms describe perturbations from two sources, which are symmetrical about 
the z = 0 plane in a medium with a constant BV frequency N2, while the third term describes the effect 
from the presence of a discontinuity in the BV frequency and the result of interaction of the sources. 

Since different representations in the form of integrals and series and different asymptotic expressions 
are known for the function, formula (2.3) is a source for obtaining approximations of the fundamental- 
solution in the lower half-space. In the upper half-space the fundamental solution is no longer expressed 
in terms of the standard function a(~, h). This complicates the investigation, which we shall carry out 
in the next section. 

We will now find the simplest asymptotic formula for the fundamental solution in the lower half space. 
As we know, the asymptotic formula 

holds as z + = and for non-negative values of the parameter h and for values of this parameter which 
are not close to zero or to unity. 

On further introducing the function 

a2(T,h)= 2 $ 
cos z 

nm 
substituting the expressions for the function @(T, h) in terms of the functions Q1(2, h), <p2(2, A) into 
formula (2.3) and taking account of (2.2), we obtain the asymptotic formula when z < 0, T -+ 00 

14: 
+(lA2)R- 

N&-t++? (2.4) 

The quantities R,, h, are defined b:, formulae (2.1). 
Note that terms of the order of 7-l’ are retained in the first two terms for fixed values of h+ which 

differ from zero and unity, while terms of the order of T-~’ are retained in the third term in formulae 
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(2.4). This is associated with the non-uniformity of the asymptotic representation with respect to the 
parameters Ni and Nz. If, for a fixed z, one takes the limit in formula (2.4) when Ni + Nz, the third 
and fourth terms become of the order of l/& and the correct asymptotic formula when r + 00 for the 
case of a constant BV frequency is obtained. 

3. THE WAVE PATTERN IN THE UPPER HALF-SPACE 

On making the change of variables (2.2) in Eq. (1.7) and using the notation of (2.1), we obtain 

(3.1) 

F(v)= j/77-G 

J-m ’ 
B(v)=v2r2 -(zp7+qJ) 

It follows from (2.2) that, when N2 c Ni, the parameter 6 > 1. The treatment can henceforth be 
confined solely to this case since, when Nz > Ni, instead of the change (2.2), we can make the change 

which leads to the formula which is obtained from (3.1) by permuting N2 and Ni and z and ~0. 
The investigation was based on a study of the branching points of the integrand. The branch of the 

function $1 - v2) is regular in the plane with cuts along the real axis joining the points + 1 and -1 with 
infinity and takes a value of 1 in the case of a zero value of the argument. The branch of the function 
J(p2 - v2) is also selected in a similar way. There are further branching points in the case of the integrand 
which are zeroes of the function B(v). If we put 

then 

v2 = w2 + 2pw 
6+w2+2pw’ 

B(v) =$(l-G)T(w) 

T(w)=czw2+2bw-&, u=r2--6z2, b=pa--&xi,, ~=(cLz+z~)~ 

When 3 > Sp-2(p.2z2 - zi), the quadratic trinomial T(W) has two real roots 

w, = 
-b+fi, w =-b-d-i?= c6 

2 a a ‘7iri 

Using formula (3.3), we obtain 

Vf 
S a2 

=I- 
S+Wf +2pWi 

=l- 
a2+Af2uofi 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

By using (3.3H3.5) and the identity A2 - 43z2& = a2(zi - p22)2, it can be shown that, when 



Internal-wave equation for a medium with a discontinuous Brunt-VakilP frequency 605 

D > 0, the sign of the expression A 
v; < 1. 

f 2qdD is identical with the sign of A and 0 < v: < 

The function B(v) has two real zeros fvt when a > 0,6 > 0 but does not have zeros when a < 0, 
6 > 0, D > 0. When D > 0, the zeros of the function B(v) are complex conjugates and have a non-zero 
imaginary part. 

Actually, when a > 0,6 > 0, we have D > 0 and 0 c v2 < v1 < 1. On account of the choice of the branches in 
formula (3.2), it is necessary and sufficient that the inequality Wi + u > 0 be satisfied, in order that the numbers 
~Vi should be zeros of the function B(v). If a > 0, then w1 + u > 0, w2 + u < 0 and the points fvl are therefore 
zeros of the function B(v) while the points +v2 are not. If, however, a < 0, then w1 + u < 0, w2 + u < 0, so that 
there are no zeros in this case. 

Remark. The inequality D < 0 when 6 > 0 is satisfied inside the hyperboloid of rotation 

1-?J6=&-= (3.6) 

It will next be shown that terms, which exponentially tend to zero when the time tends to infinity, 
correspond to complex zeros. 

We now transform formula (3.1). Suppose that r > d(8), 6 > 0. In this case, D > 0 and the function 
P(v) has, in addition to the branching points 21, ku, a further two branching points fvl, 0 < v1 < 1, 
which are zeros of the function B(v). We now cut the complex plane along the segments [vr, u], [-u, 
-vr]. The function F(v) is regular in a plane with such cuts. On passing around the cut along a contour 
which encompasses it the numerator and the denominator of the fraction F(v) change sign, and this 
function is positive on the lower edge of the right-hand cut. The equalities 

F(-VfiO)=-F(VfiO), F(V+iO)=F(V-iO), VE[V,,p] (3.7) 

hold and, by using these and applying Cauchy’s theorem, we transform integral (3.1) to an integral along 
the segment [vr, p]. On subdividing this segment into two [vr, 11, [l, u] and using the equality (3.7), we 
obtain 

G=- -$--(G,+G~). ho, -4 
2 (3.8) 

G, = iF(v)si G2 
“I 

= r F(v)sin(rv)dv 

If r < d(S), the function B(v) does not vanish and it is necessary to put Gr = 0 in formula 
(3.12). 

If a point (x, y, z) lies in those domains where D < 0, the function B(v) does not have more than two 
pairs of complex conjugate roots and integrals along the vertical cuts in the upper half-plane joining a 
branching point to inlinity, which decrease exponentially as t + OQ, appear in formula (3.8). Consequently, 
it is not necessary to take account of these terms when deriving approximate formulae using the 
stationary-phase method. 

We will now find the asymptotic form of the fundamental solution in the upper half-plane. We use 
formulae (3.7X3.8) when 6 > 0, r > n’(S). The function F(v), which is defined by formula (3.1), has 
three branching points in the segment [vr, p]: v1 < 1, 1, u > 1. We put 

-NV) = (v2 - v:)x(v), x(v) > 0, v E [v,, l] (3.9) 

where 

X(v,)=r2+Z2+~+zzo w,+p+- 
t 

1 

WI +cL 1 

-B(l) = r= -z26=a, -B(p)=p2r2+&8>0 

We now give an estimate of the function defined by formula (3.8) using standard estimates of the 
stationary-phase method. When 6 > 0, we have 
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1 1 --- ~cos(~~-~~4) cos(~+(1-2&n./4) 

fl*$hiF J/jFqi - JYqi 1 

5 = ty r* - z26) 

(3.11) 

The term containing re3’ is retained with the aim that formula (3.11) should give a correct 
approximation in the case of small values of 6. 

Note that formula (3.11) is inapplicable for small values of the parameter a = ? - z%. More 
precise estimates (see [4]) are required in this case. The asymptotic form when u = 0 is calculated in 
Section 5. 

4. APPROXIMATION FOR SMALL VALUES OF 6 

If the BV frequencies in the upper and lower layers only differ by a small amount, this parameter will be small. 
We will express all the remaining parameters in terms of the small parameter, retaining terms of the zeroth and 
first orders. When r Z= z d(6), 8 > 0, from formulae (3.2), (3.3) and (3.5) we obtain the following expression for 
the first term in formula (3.11) 

Ri =r* +(pz+z,,)‘, R2 =r2+(Z+q,)2, A=- lw + Z() I , k=’ 
% % 

5. SMALL VALUES OF THE PARAMETER a 

We now treat formulae (3.2). (3.3) and (3.8)-(3.10) when 6 > 0, retaining only terms of the zeroth and first order. 
It can be shown that Gi is uniformly of the order of u2 with respect to r. Using the last equality of (3.8), we write 
the function G2 in the form 

G2 =Re 

i J 

pdi--+-sin(,,d, 
I -B(v) I 

-B(~)=~(w-w~)(w-w~)(l-~*)=(~~~-ib~~)(~~-~(w~+~)~) 
(5.1) 

The difficulty in investigating integral (5.1) for small values of a lies in the fact that the branching point vi becomes 
close to the end point v = 1. The situation when the stationary point is close to the end point and the asymptotic 
form is expressed in terms of Fresnel functions has been considered earlier in [4]. In the more complex case being 
considered, the asymptotic form is no longer expressed in terms of known special functions. 

We confine ourselves to the case when a = 0. The point v = 1 makes the greatest contribution to the asymptotic 
form. According to the general technique for obtaining asymptotic estimates of integrals of this type [4], using 
formula (3.8) we conclude that the asymptotic formula 

holds. 
A study of the fundamental solution for small, but non-zero, values of the parameter a requires further 

investigation. 
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